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1. INTRODUCTION

The notion of cardinal exponential spline interpolant (of order zero) has
been introduced and thoroughly investigated by Schoenberg [9, 10). In a
recent paper [I), Greville et al. have extended this notion to the case of order
r ~ I (cf. Section 4 below). Moreover, these authors have thoroughly studied
their extension in terms of the shift operator. On the other hand, the author
of the present paper has used an alternative approach to certain classes of
cardinal spline functions, adopting the viewpoint of integral transform theory
and complex analysis. Since this method is based on the notion of "discon­
tinuous factor" it produces complex contour integral representations (with
non-compact integration paths) of cardinal spline functions in a very natural
way [4-6]. From these representations all the information that is needed
may be obtained by the calculus of residues. It is the purpose of the present
paper to establish in the same vein a complex contour integral representation
of the cardinal exponential spline interpolants of the first order (Section 4).
On the basis of this result we shall determine the pointwise convergence
behaviour on fR of the cardinal exponential spline interpolants of order r ~ 0
and successively higher degree (Section 5). For the reader's convenience, a
resume of the complex contour integral representation of cardinal
exponential splines (of order zero) and the closely related Euler-Frobenius
polynomials will be given in Sections 2 and 3, respectively. Finally, Section
6 summarizes some general principles concerning the application of integral
transform techniques to the theory of (univariate) cardinal and periodic
spline functions. The object is to emphasize the close connection of these
classes of splines with the harmonic analysis.
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2. CARDINAL EXPONENTIAL SPLINE FUNCTIONS
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For any integer m ~ 1 let elm(lR; 2.) denote the complex vector space of all
cardinal spline functions of degree m on the real line IR with respect to the
bi-infinite knot sequence 2. of integer points. If h denotes a complex number
*0 (we shall write h E C x as a shorthand), the set of cardinal spline
functions sm E el m(lR; 2.) that satisfy the homogeneous linear difference
equation of the first order

f(x+ 1)-hf(x)=O (x E IR) (1)

forms a one-dimensional vector subspace (fm,h(lR; 2.) of elm(lR; 2.). The
elements of the space (f m h(lR; 2.) are called cardinal exponential splines of
degree m ~ 1 and weight h (Schoenberg [9, 10]). For weights h that do not
belong to the unit circle U = {z Eel Iz I= I} in the complex place C we
may establish the following complex contour integral representation with
non-compact path.

THEOREM 1. Let the number h E ex - U be fixed and let P denote the
positively oriented boundary of any closed vertical strip in the open complex
right, resp. left, half-plane that contains the line {z Eel·Re z = log Ihi} in
its interior. Then the vector subspace (fm,h(lR; 2.) of elm(lR; 2.) may be
spanned by the cardinal exponential spline Sm,h of degree m ~ 1 and weight
h given by

1 e(x+ liz

Smh: 1R3X ""-'-2·J (Z h) m+l dz ,, 1U p e- Z
(2)

i.e., (fm,h(lR; 2.) = C . Sm,h'

The preceding theorem represents the main result of Ref. [4]. Its proof
depends upon a complex line integral representation of the basis splines
which may be established by an application of the inverse bilateral Laplace
transform (cf. Section 6 infra).

3. EVLER-FROBENIVS POLYNOMIALS

Let us keep to the above notations. For any number hE C x there exists a
cardinal exponential spline s~) E (fm,h(lR; 2.) of degree m ~ 1 and weight h
that satisfies the interpolation condition

if and only if Sm,h(O) * O.

(n E 2.) (3)
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With this in mind define
(h 1)m+l

Pm: h ""+ m! h Sm,h(O)

Then we may establish (cf. [5)):

(m ~ 1). (4 )

THEOREM 2. For all integers m ~ 1, Pm is a monic polynomial of degree
m - 1 with strictly positive integer coefficients. It satisfies Pm(O) = 1.

Following the terminology of Schoenberg [9, 10], (Pm)m;> 1 are called
Euler-Frobenius polynomials. In view of (4) and (2) these polynomials
admit the complex contour integral representation

(h-1)m+lm! eZ

Pm(h) = h 2nit(eZ_h)zm+ldz (5)

for h E ex - U. A short computation establishes the following:

THEOREM 3. For any number hE ex - U the first derivatives (P;")m;> 1

of the Euler-Frobenius polynomials admit the complex contour integral
representation

I mh+l (h_l)m+l m! eZ

Pm(h)=h(h_l)Pm(h)+ h . 2nit (eZ_h)2 zm+l dz , (6)

where the non-compact path P of integration occurring in (6) is defined as in
Theorem 1 supra.

From the complex contour integral representations (5) and (6) we are able
to deduce the following:

COROLLARY 1. The Euler-Frobenius polynomials (Pm)m;> 1 satisfy the
three-term recurrence relation

Pm+l(h) = (mh + I)Pm(h) - h(h - l)p;"(h) (m ~ 1). (7)

(8)

=
1

(h _ 1)m+2Pm+l(h).

From (8) and (6) the recurrence relation (7) becomes obvious. •

In particular we have Pm(l) = m!

Proof For hE ex - U let (zk(h»kEZ denote the sequence of zeros of the
entire holomorphic function z ""+ eZ

- h. An application of the calculus of
residues furnishes the identities

m! eZ 1 1
2ni t (eZ- h)2 zm+ 1 dz = - h (m + I)! (;" z~+2(h)
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(9)

In particular, the recursion formula (7) implies via the intermediate value
theorem (cf. Quade and Collatz [2)):

COROLLARY 2. For all integers m;;::: 2, the roots of the Euler-Frobenius
polynomials Pm are simple and located on the open negative real half-line
R~.

It should be noted that the Euler-Frobenius polynomials play an
important role in the theory of cardinal splines as well as in the theory of
periodic splines. See, for instance, the paper [2] by Quade and Collatz cited
above, and the forthcoming notes [8].

4. CARDINAL EXPONENTIAL SPLINE INTERPOLANTS OF

HIGHER ORDER

Let h E ex - U denote a weight so that Pm(h) *- 0 for an integer m;;::: 1. In
view of (2) and (4) the cardinal exponential spline

(h - 1)m + I m! e(x+ I)z

S (O). R :::> x""> f dz
m' ~ hPm(h) 2ni p (eZ-h)zm+1

is the unique element of the space (fm.h(R; l) that satisfies s~)(O) = 1 and
hence the interpolation condition (3). Following Greville et al. [1], for any
integer r;;::: 0 the function on R

(r) _ 1 or (0)

sm -rl ohr sm (m;;::: 1) (10)

will be called the cardinal exponential spline interpolant of degree m and
order r with respect to the bi-infinite geometric sequence (hn)ne:l"

In the case r = 1 we conclude from (9) and the recurrence formula (7) the
following result:

THEOREM 4. Let the weight h E ex - U satisfy Pm(h) *- 0 for an integer
m ;;::: 1. The cardinal exponential spline interpolant of degree m and of the
first order with respect to the bi-infinite geometric sequence (hn)nez admits
the complex contour integral representation

sm(l): R :3 x""> Pm+l(h) s(O)(x - 1)
(h - I)Pm(h) m

(h _1)m+1 m! e(x+I)Z
+ hPm(h) 2nit (eZ_h)2 zm+1 dz. (11)

The path P of integration is defined as in Theorem 1 supra.
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As a consequence we may establish the following reduction formula:

THEOREM 5. For x E IR and all weights hE ex - U so that Pm(h) *- 0
(m ~ 1) the identity

s(l}(x) = xs(O}(x - 1) - Pm+ l(h) (s(O) (x - 1) - s(O)(x - 1» (12)
m m (h _ I)Pm(h) m+l m

is obtained.

Proof An application of Cauchy's residue theorem yields

1 e(x+ l)z [xe(X-l}Zk(h} e(X-llZk(h)]

2ni t (eZ _ h)2 zm+l dz = f;z z~+l(h) - (m + 1) z~+2(h)

for all x E IR. In view of (9) the preceding identity implies

(h - l)m+ 1 ml e(x+ l)z

hPm(h) 2ni Jp (eZ
_ h)2 Zm+ 1 dz

(13)

(14)Pm+ l(h) (0) ( 1)
(h -1)Pm(h) Sm+l x- .

If we insert the identity (14) into (11) the reduction formula (12) becomes
obvious. I

COROLLARY. Let r ~ 0 denote any integer. For all x E IR and weights h
satisfying the hypotheses of Theorem 5 the relation

s(r+l)(X) = _1_ [xs(r)(x _ 1) - L ~~ ( Pm+t(h) )
m r + 1 m O<,l<r 11 dh1 (h - 1)Pm(h)

X (s::+P(x - 1) - S:;-I)(X -1)] (15)

holds.

The identity (15) will be of use in the next section.

5. CONVERGENCE BEHAVIOUR OF

CARDINAL EXPONENTIAL SPLINE INTERPOLANTS

Agreeing to retain the above notations, let h E e - (U U IR _) and

(16)
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Then we have O(h) E lO, 1[. From (9) and (5) we conclude that

s~)(x) = h
X(~l z;:~:~:) )! (~l Z~+\h) ) (17)

= hX(l + L (zo(h)/zih»m+1 ehikX)!(I + L (ZO(h)/zk(h»m+l)
kE!X kEZX

holds for all x E IR and all integers m ~ 1. In particular, there exists a
constant Mo(h) > 0 so that the estimate

(x E IR) (18)

holds. In order to establish an estimate of type (18) for cardinal exponential
spline interpolants of order r> ° let d(h) = infzER=L Iz - hi denote the
distance in the complex plane iC of the point hE iC - (UU IR _) from the
closed negative real half-line IR _. Define the sequence (Mr(·, h»r>o of
positive functions on JR by induction on r according to the rules

Mo(x, h) = Mo(h),

M r+1(x, h) = _1_ [Ix lMr(x - 1, h)
r + 1

r ~ ( 1 1 Ih l )

+ (1 + 2) ot;.;;r 2 + Ih _ 111+1 + d(h)1 + d(h)I+1

XlhIIMr_I(X-l,h)] (19)

whenever x E IR and hE iC - (UU IR _). Then (18) admits the following
extension:

THEOREM 6. For all hE iC - (UU IR_) the cardinal exponential spline
interpolants (s~)m> 1 of order r ~ 0 with respect to the bi-infinite geometric
sequence (hn)nel satisfy the estimate

(x E IR) (20)

for all degrees m ~ 1.

Proof In the case r = 0 the inequality (20) reduces obviously to the
estimate (18). Let us proceed by induction on the order r ~°and suppose
that we have established the estimate (20) for an arbitrary order r ~ O. Then
we obtain by the Corollary of Theorem 5 for all x E IR



294 WALTER SCHEMPP

~ r~1 IX(S~)(X_I)_(X~I)hX-r-l)

'" I d
l

( Pm+l(h) ) ( (r-/)( I)
-otr<.rl!dhl (h-I)Pm(h) Sm+IX-

~ r ~ I [ixi Mr(x - I, h)(m + I)' Ihlx
-

r
-

1 O(h)m

+(1+2r»), ~I~( Pm+l(h) )1
00<.r I! dh l (h - I)Pm(h)

X Mr_l(x - I, h)(m + 1)'-1 Ihlx -
r +I

-
1 O(h)mJ

I [I h) r) '" II d
l

( Pm+l(h) )1~7+T xIMr(x-l, + (I + 2 oft<.r l! dhl (h -1)Pm(h)

(21 )

In order to complete the proof denote by L the logarithmic derivative. In
view of the recursion formula (7) we have for 0 ~ I ~ rand m ~ I:

where

I I d
l

( Pm+l(h) )1 II d
l

(mh+l) Il! dh l (h - I)Pm(h) = l! dh 1 h - I - hLPm(h) , (22)

I I d
1

(mh + I) 1 ( I)l! dhl h-I ~(m+l) 1+lh_III+1 (O~l~r). (23)

Moreover, if '1 E IR _ (I ~j ~ m - I) denote the roots of the Euler­
Frobenius polynomial Pm (see Theorem 2 and Corollary 2 of Theorem 3),
the following estimate is obtained for 0 ~ I ~ rand m ~ I:
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Consequently, the left-hand side of (22) admits the estimate
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(h_~j+l I
(24)

In view of the definition (19) we obtain by (21)

This proves the inequality (20) for all degrees m ~ 1 and orders r ~ O. I
In particular, the estimate (20) implies the pointwise convergence theorem

of Greville et al. [1] for cardinal exponential spline interpolants (s~»)m> 1 of
order r ~ 0:

COROLLARY. Let the weight hE (; - (UU IR _) be given. The con­
vergence

lim s~)(x) = (X ) hx
-

r

m_OC) r
(r~ 0) (27)

holds pointwise for all x E IR.

Thus, the pointwise convergence behaviour of the cardinal exponential
spline interpolants differs significantly from the pointwise convergence
properties of the cardinal logarithmic splines of successively higher degree
("Newman-Schoenberg phenomenon" [3, 6]).

6. SOME GENERAL REMARKS

Let us conclude with some general remarks concerning the application of
integral transform techniques to some problems of spline theory. The
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cardinal exponential splines of degree m ~ I and weight h E ex - U, i.e., the
elements of the space (fm.h(lR; I) = C . Sm,h' are defined on the additive
group IR of real numbers. Since the characters x "'" e ixy (y E IR) of the
additive group IR form the dual group rR, the Fourier transform and
cotransform are associated with IR in a natural way. As we have pointed out
in Section 2, the complex contour integral representation (2) of Sm,h arises
by an application of the inverse bilateral Laplace transform [4] which is
related to the Fourier cotransform of IR by continuing the exponentials
x"'" eixy in the complex y-plane away from the real line IR, to reach non­
unitary linear representations of the additive group IR.

The role that the Fourier transform plays for the additive group IR is
played by the Mellin transform in the case of the multiplicative group IR ~ of
strictly positive real numbers. In [6] we have established a complex contour
integral representation of the cardinal logarithmic splines on the open real
half-line IR ~ by an application of the inverse Mellin transform. In this case
the path of integration is the positively oriented boundary of a suitable
closed vertical strip in the complex plane C that contains the imaginary axis
in its interior. Then a procedure similar to those in the previous sections
enables us to determine the convergence behaviour of the cardinal
logarithmic splines of successively higher degree on the open half-line IR ~ .

Finally, let us cast a glance at the case of periodic splines. Among the
various classes of univariate spline functions, the theory of cardinal and
periodic splines presents nowadays the most complete picture. It is well
known that the periodic polynomial splines with respect to equidistant knot
sequences on the one-dimensional torus group admit circulant coefficient
matrices, i.e., complex coefficient matrices of the form displayed below.

at a2 a3 an_ 1 an
an at a2 an_2 an- 1

an_t an a 1 an_3 an- 2

(28)

Observe that the entries of the jth row (2:r;;;"j:r;;;" n) of the n X n matrix (28)
are obtained from the (j - I )st row by shifting all entries one to the right
and putting the last entry of row j - I back as the first entry of row j.

Unitary diagonalization of the matrix (28) shows that the circulant
matrices are closely related to the finite Fourier cotransform, i.e., to the
Fourier cotransform of the cyclic group Ilnl of integers modulo n. In
particular, this inter-relation seems to suggest that the finite group llnI may
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control the properties of the univariate periodic splines. However, a deeper
look reveals that the genuine group which governs the periodic spline
functions is actually the finite Heisenberg group N(3, l/nl) modelled over
the ring 7L/n7L rather than the cyclic group 7L/n7L itself. The finite nilpotent
group N(3, 7L/n7L) forms a subgroup of the special linear group 8L(3, 7L/n7L)
in three variables over the ring 7L/n7L. Its elements are the 3 X 3 upper­
triangular matrices of the type displayed below

Y
1
o

(29)

where the entries x, y, z belong to the ring 7L/n7L. The representation theory
of N(3, 7L/n7L) reflects the properties of the finite Fourier cotransform.
Moreover, it relates the finite Heisenberg groups with the periodic splines as
well as with the theory of attenuation factors of harmonic analysis ("Abmin­
derungsfaktoren" in the terminology used by Quade and Collatz [2]). Due to
limitations of space we have to stop our brief preview at this point. For an
elaboration of the group theoretic ideas indicated above the reader is referred
to a forthcoming monograph on these topics. The notes [7] survey the
various results and deal with several applications of nilpotent. harmonic
analysis to periodic spline functions in terms of the finite Fourier
cotransform.

REFERENCES

I. T. N. E. GREVILLE, I. J. SCHOENBERG, AND A. SHARMA, The spline interpolation of
sequences satisfying a linear recurrence relation, J. Approx. Theory 17 (1976), 200-221.

2. W. QUADE AND L. COLLATZ, Zur Interpolationstheorie der reellen periodischen
Funktionen, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 30 (1938), 383-429.

3. W. SCHEMPP, A note on the Newman-Schoenberg phenomenon, Math. Z. 167 (1979),
1-6.

4. W. SCHEMPP, Cardinal exponential splines and Laplace transform, J. Approx. Theory 31
(1981),261-271.

5. W. SCHEMPP, A contour integral representation of Euler-Frobenius polynomials, J.
Approx. Theory 31 (1981),272-278.

6. W. SCHEMPP, Cardinal logarithmic splines and Mellin transform, J. Approx. Theory 31
(1981), 279-287.

7. W. SCHEMPP, Approximation und Transformationsmethoden, III, in "Functional Analysis
and Approximation" (P. L. Butzer, E. Gorlich, and B. Sz.-Nagy, Eds.), ISNM 60,
Birkhiluser-Verlag, Basel/Boston/Stuttgart, 1981.

8. W.• SCHEMPP, "Compld contour integral representation of cardinal spline functions."
With a preface by I. J. Schoenberg, to appear.

9. I. J. SCHOENBERG, Cardinal interpolation and spline functions. IV. The exponential Euler
splines, in "Linear Operators and Approximation I" (P. L. Butzer, J. P. Kahane, and B.
Sz.-Nagy, Eds.), ISNM 20, Birkhiluser-Verlag, Basel/Boston/Stuttgart, 1972.

10. I. J. SCHOENBERG, "Cardinal Spline Interpolation," Regional Conference Series in
Applied Mathematics, Vol. 12, Society for Industrial and Applied Mathematics,
Philadelphia, Pa., 1973.

Printed in Belgium


